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1. Introduction  
Earthworms are bioindicators of soil biodiversity and 
health (Paoletti, 1999; Fründ et al., 2011; Fusaro et al., 
2018). They are involved in a variety of ecological functions 
and services through feeding, burrowing, and castings, 
such as decomposition (Lubbers et al., 2017; Frouz, 2018; 
Barthod et al., 2020) and nutrient cycling (Bohlen et al., 
2004; Domínguez et al., 2004; Blouin et al., 2013). Burrows 
retain a large amount of oxygen and organic matter, 
and the castings are high in assimilable C and various 
nutrients (Lavelle et al., 2001; Curry and Schmidt, 2007). 

Studies on the earthworm community claim that their 
presence ranges from 1 g to 150 g per m² (Buckerfield et 
al., 1997; Phillips et al., 2019), and are considered among 
the most abundant soil biomass (Owen and Galbraith, 
1989; Briones and Schmidt, 2017; Li et al., 2020). In 
addition to organic matter, earthworms can feed on fungi 
(Bonkowski et al., 2000; Curry and Schmidt, 2007; Song 
et al., 2020), nematodes (Dash et al., 1980; Demetrio et 
al., 2019), and protozoa (Bonkowski and Schaefer, 1997; 
Monroy et al., 2008), so their activity can modulate the soil 
community. Specifically, entomopathogenic fungi (EPF) 
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can be disseminated on the surface of the earthworm 
body (phoresy) or after surviving transit through the gut 
(Shapiro-Ilan and Brown, 2013). However, this interaction 
is not always positive, because recent studies pointed out 
that earthworm cutaneous excreta might alter their vitality, 
pathogenicity, and reproduction (Chelkha et al., 2021; 
Zhou et al., 2021). This impact is related to earthworm 
species, spore viability, and drilospheric impacts, which is 
the zone of earthworm influence, including midden litter 
and the soil volume descending along the burrow wall 
(Brown, 1995; Brown et al., 2000).

The endogenous earthworm species Aporrectodea 
molleri and their effects on microbial abundance have been 
less studied than other ecological categories of earthworms 
(Medina-Sauza et al., 2019; Yakkou et al., 2021a). Therefore, 
there is little evidence on the impact of other species, rather 
than Eisenia fetida or Lumbricus terrestris, species available 
in commercial stocks and accessible to research. However, 
the presence of other species, such as Pontoscolex 
corethrurus, increase bacterial abundance in soil, as shown 
by soil bacterial community analysis in metataxonomic 
approaches (16S rRNA gene) (Braga et al., 2016). In 
addition, there is evidence that earthworms can increase 
certain proteobacteria, such as acidobacteria, in their gut 
or cuticles (Gong et al., 2018). Therefore, due to bacteria 
in their guts and castings, earthworms might significantly 
affect the soil (Andriuzzi et al., 2016). Indeed, the gut 
provides a distinct microenvironment with controlled 
moisture conditions and various nutrient reservoirs that 
can function as a biological filter for ingested microbial 
communities, selecting, preferring, and eliminating 
groups of microorganisms (Horn et al., 2003; Drake, 
2007). Therefore, understanding the effect of the gut on 
fungal proliferation will expand our knowledge regarding 
the effect of earthworms on soil ecosystem function (Horn 
et al., 2003; Drake, 2007).

Nematophagous fungi (NF) are predominantly 
recognized as natural inhabitants in the soil environment 
(Gray, 1987). They are carnivorous fungal species used as 
biological control agents (Nordbring-Hertz et al., 1989, 
2006; Liu et al., 2009; Herrera-Estrella et al., 2016). They act 
as natural enemies of nematodes, using spores or mycelia 
as traps or hyphal tips to kill eggs and cysts (Nordbring-
Hertz, 2004). In particular, nematode-trapping fungi such 
as Arthrobotrys musiformis (Orbiliales: Orbiliaceae) are 
saprophytes that can form a hyphal net structure to trap 
nematodes by adhesion or mechanically (Nordbring-
Hertz et al., 2006). In addition, Purpureocillium lilacinum 
(Hypocreales: Ophiocordycipitaceae) is an egg-parasitic 
fungus active against root-knot and cyst nematodes but 
also can be a pathogen of insects and cause some human 
mycoses (Luangsa-Ard et al., 2011; Toledo-Hernández et 
al., 2019). 

On the other hand, other critical fungal inhabitants 
are the groups of the EPF in the order Hypocreales 
(Ascomycota), considered the most numerous natural 
enemies of arthropod pests in the agroecosystem 
(Barra-Bucarei et al., 2019). For example, Beauveria 
bassiana (Hypocreales: Clavicipitaceae) is often used 
as a biological control agent (Meyling and Eilenberg, 
2007; Baki et al., 2021). It infects the host through the 
cuticle by conidia. Once the insect dies, EPF enters the 
saprophytic phase, begins active growth of hyphae and 
reproductive structures, and generates aerial mycelia for 
dispersal to begin the life cycle again (Feng et al., 1994; 
Ownley et al., 2008). The behaviour of EPFs and NF and 
their requirements for nutrient sources are distinct. In this 
ecological context, we hypothesized that decomposing 
earthworms could promote the growth of NF and EPFs 
by altering the availability of underground nutrients. 
However, their effectiveness will differ depending on the 
degree of the saprophytic capacity of the fungus. 

In this study, we included two NF species and one EPF as 
an example to start elucidating these complex interactions 
in a proof-of-concept approach. All our experiments were 
performed in vitro to avoid possible interference with 
other soil components. We used different scenarios and 
compared the growth parameters of each fungal species 
with a conventional medium suitable to all these species. 
In order to elucidate the relevance of the gut contents 
and decomposition of the earthworm as a resource for 
beneficial soil fungi, we addressed the following objectives: 
(i) evaluate the mycelial growth of different fungal species 
in different concentrations of earthworm extract medium, 
(ii) compare fungal growth upon exposure to earthworm 
extract with the presence or absence of earthworm gut 
content, and (iii) evaluate the production and germination 
of conidia in the presence of earthworm extract at different 
concentrations.

2. Material and methods
2.1. Earthworms and fungi
Earthworms were obtained directly from the soil by 
digging and manual labour in the Akrach-Rabat region 
of Morocco (latitude 33°56′15″N, longitude 6°46′43″W). 
Sampling was conducted between 8:00 and 10:00 a.m., 
when earthworms are most active near the surface (0.25 
m and 0.5 m depth). The species Aporrectodea molleri 
was identified morphologically (determination key) and 
genetically based on the cytochrome c oxidase subunit I 
gene (COX1, GenBank accession number MT878074) in 
collaboration with the “Grupo de Ecologia Animal (GEA)” 
at the University of Vigo-Spain (Houida et al., 2021). 
Individuals of A. molleri were kept in good condition in a 
plastic pot with soil, food, and high humidity before being 
transferred to the laboratory.
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We evaluated two species of NFs: a trapping fungus 
Arthrobotrys musiformis Drechsler (Orbiliales: Orbiliaceae; 
strain 11, GenBank accession number KJ938572) 
provided by L.W. Duncan (University of Florida, USA), 
and an egg- or cyst-parasitic fungus Purpureocillium 
lilacinum (Thom) (Hypocreales: Ophiocordycipitaceae; 
ARSEF 9357, GenBank accession number KJ938575), 
provided by ARSEF culture collection in Ithaca, New 
York (Luangsa-Ard et al., 2011). Also, we evaluated a 
species of entomopathogenic fungus (EPF) Beauveria 
bassiana (Balsamo) (Hypocreales: Clavicipitaceae, native 
to the Algarve; GenBank accession number MG515530) 
supplied by F.A. Bueno-Pallero (Universidade do Algarve, 
Portugal). Fungal species were first grown in 90-mm 
diameter Petri dishes with potato dextrose agar (PDA, 
Biokar) at 25 ± 1 °C. The 3- to 4-week-old fungal material 
was stored at 4 °C and in the dark until use no longer than 
6 weeks.
2.2. Preparation of earthworm extract and culture media
Freshly recovered earthworms were carefully cleaned with 
tap water, passed through absorbent paper to eliminate the 
excess of water and weighed. Individuals providing a total 
of 100 g were directly oven-dried at 60 °C in a glass Petri 
dish (fresh earthworm, FE). Another 100 g was kept in the 
dark in a Petri dish with filter paper with high humidity 
for fasting to ensure cleaning of the intestinal contents. 
After 8 to 10 days, we washed the worms and put them in 
a 60 °C oven (worms without intestinal contents, EDG). 
After seven days in the oven, the earthworm tissue was 
completely dried. We ground it to a powder with a mortar 
and pestle and dissolved it by shaking it with distilled 
water in an Erlenmeyer flask. The solution was placed in 
the oven at 70 °C for maceration in distilled water baths. At 
each maceration, the supernatant was collected, and then 
the maceration baths were continued by adding distilled 
water in the same way until there was no more substance 
to dissolve, and the water became clear. The successive 
macerates were accumulated and filtered through cotton. 
The filtrate was dried in an oven (70 °C) and weighed to 
obtain the dry weight. The whole process takes about 15 
days. From the 100 g fresh weight of earthworm (EDG), 
11% of the extract is recovered on a dry weight basis, and 
from the 100 g fresh weight of FE, 13% of the earthworm 
extract is collected on a dry weight basis (Yakkou et al., 
2021b).

Six concentrations were prepared for each medium: C1 
= 40 g/L, C2 = 20 g/L, C3 = 10 g/L, C4 = 5 g/L, C5 = 2.5 
g/L, and C6 = 1.25 g/L of the extracts and added 14 g of 
bacteriological agar (Agar No.1, 500 g, Oxoid) to solidify 
the media. The solution was autoclaved at 121 °C for 15 
min. Then, 16 mL of each culture medium was poured 
into a 9-cm diameter plastic Petri dish. In addition, potato 
dextrose agar (PDA, C = 24 g/L) and heart-brain agar 

(BHI Brain Heart Infusion Agar, dehydrated, Oxoid, C 
= 3.7 g/L) were prepared as the additional media proved 
suitable for the three fungi studied. A liquid medium was 
prepared using the same concentration as the previous 
one, and for the control, we prepared potato dextrose (PD) 
and brain heart infusion (BHI).
2.3 Evaluation of mycelial growth, reproduction, and 
germination of conidia for Arthrobotrys musiformis, 
Purpureocillium lilacinum and Beauveria bassiana
Fungi from 15-day-old PDA media were used as inoculate 
in this study. A 5-mm disc of the corresponding fungi was 
taken with a sterilized cylinder from the peripheric (the 
active growing zone) and placed in the middle of the dish 
(n = 3 per treatment). The dishes were closed with parafilm 
and incubated at 28 °C in the dark. The treatments 
were: (i) PDA, (ii) BHI, (iii) fresh earthworms (FE) (six 
concentrations C1, C2, C3, C4, C5, C6), and (iv) earthworms 
without gut contents (EDG) (six concentrations C1, C2, 
C3, C4, C5, C6). Diameter measurement was performed 
using a digital calliper every 24 h starting on day 2 for 18 
days. After 18 days, a measurement was made to quantify 
the conidia produced by the fungus under each growth 
condition. A 5-mm disc of fungus was suspended in 1 
mL of tween solution (distilled water and 0.05% Tween 
80) and counted using a Malassez chamber (n = 3). The 
experiment was performed twice.

We prepared a liquid medium using the same six 
concentrations of 40 g/L, 20 g/L, 10 g/L, 5 g/L, 2.5 g/L, 
and 1.25 g/L of the two earthworm extracts (FE and 
EDG), and for the control, we prepared potato dextrose 
(PD), brain heart infusion (BHI), and distilled water 
(NC). The solution was autoclaved for 15 min at 121 °C. 
The treatments were: (i) PD, (ii) BHI, (iii) NC, (iv) fresh 
earthworms, (FE, six concentrations C1, C2, C3, C4, C5, 
C6), and (v) earthworms devoid of intestinal contents 
(EDG, six concentrations C1, C2, C3, C4, C5, C6). A 
conidial suspension was prepared using a 2-weeks-old 
PDA culture and adjusted by the Malassez counting 
chamber to 5–6 × 10⁶. We added 100 μL of our suspension 
to a 1-mL Eppendorf tube containing 400 μL of sterilized 
medium and incubated for 48 h at 28 °C and kept in 
the dark. Germinated and ungerminated conidia were 
counted microscopically by Malassez chamber (n = 5), and 
we calculated the germination percentage. The experiment 
was performed twice.
2.4. Statistical analysis 
After checking the homogeneity of the results (data not 
shown), the two independent trials per experiment and 
species were combined for further analysis. We performed 
all analyses individually for each of the three fungal 
species. First, we used one-way ANOVA and Tukey’s 
HSD to compare FE and EDG media growth at maximum 
concentrations (C1) with additional media (PDA and BHI). 
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We analysed differential growth on days 3, 6, 9, 12, 15, and 
18. Next, we elucidated the effect of intestinal content of 
four concentrations (C1 to C4). Finally, we used a two-way 
ANOVA using the following factors: (i) type of medium-
with or without intestinal content, (ii) concentration, and 
(iii) interaction. We performed this analysis on days 3, 6, 9, 
12, 15, and 18. Similarly, we evaluated statistical differences 
between conidial reproduction and germination. First, 
we compared conidial production and germination 
percentage observed in additional media (PDA and BHI) 
with those prepared from earthworms (FE and EDG) by 
one-way ANOVA. Subsequently, we compared the effect of 
concentration and media on conidia production by a two-
way ANOVA analysis (with the following factors: (i) type of 
media with or without gut content, (ii) concentration, and 
(iii) interaction). All statistical differences were evaluated 
for p < 0.05 (SPSS 25.0, SPSS Statistics, SPSS Inc., Chicago, 
IL, USA), and data are presented as least squares means ± 
S. E. as descriptive data.

3. Results 
3.1. The effect of earthworm extract on growth, 
production, and germination of Arthrobotrys musiformis 
conidia
The type of earthworm medium and concentration affected 
the growth of  A. musiformis (supplementary data, Table 
S1). Specifically, the differences on the growth in each 
media were expanding the differences while advancing 
in time (Figure 1a). Differences with additional media 
regarding worm extract-based media (FE and EDG) were 
observed after 6 days of growth. However, growth in the 
EDG medium was significantly higher than in FE after 18 
days of development (Figure 1a). In addition, both worm 
extract-based media dilutions promoted higher fungal 
growth (Figure 1b). A significant impact of concentration 
and media was observed again without substantial 
interaction on days 6 and 18. At the end of the experiment, 
the lower concentrations of both media favoured fungal 
growth, with EDG media (C4, C3, C2) having higher 
growth than FE media (Figure 1b). 

Concerning sporulation, A. musiformis produced 
4 to 10 times more conidia on PDA than on any other 
medium (Figure 1c). Conidial production in FE media 
was significantly lower than in EDG medium and the BHI 
positive control. Sporulation was affected by medium and 
concentration and their interaction (Figure 1d). In the FE 
medium, the lower the concentration, the fewer conidia 
were produced; however, optimal conidial production was 
achieved at intermediate concentrations (C2 and C3) in 
the EDG medium. 

Evaluation of the germination capacity of these conidia 
showed that PDA was the best performing medium, 
recording approximately  70% germination (Figure 
1e). In contrast to conidia formation, the EDG medium 

generated a lower germination percentage, but it was not 
significantly different between FE and BHI media (Figure 
1e). When comparing the effect of earthworm extract 
media concentrations in detail, we observed an opposite 
trend in conidial production (Figure 1f). Regarding the 
germination percentage, the EF recorded the maximum 
values in the intermediate concentrations (C2-C3 and C4) 
with maximum germination for C3 (58.7 ± 4.25) (Figure 
1f), while in EDG media, the germination percentage 
decreased with the dilution of the medium (Figure 1f).

Finally, overall, mycelial density was low at the low 
concentrations (C3 and C4) and almost zero for C5 and 
C6 (data not shown) (Figure 2).
3.2. The effect of earthworm extract on the growth, 
production, and germination of Purpureocillium 
lilacinum conidia
The type of earthworm medium and concentration 
affected the growth of P. lilacinum, contrary to that of A. 
musiformis (supplementary data, Table S2). Specifically, 
the earthworm medium produced such differences since 
day 6 (Figure 3a). In detail, from day 9 to day 12, EDG 
media supported the highest growth of the fungus (Figure 
3a), although, by day 18, PDA, FE, and EDG minimized 
the differences. In the concentration-effect analysis, media 
and concentration were statistically significant from day 9 
to day 15, and the interaction was also significant on days 
9 and 12. Overall, C3 and C4 in EDG media provided 
the highest fungal growth. At the end of the experiment 
(day 18), the lowest concentrations (C3 and C4) of the FE 
medium also supported P. lilacinum growth (Figure 3b). 

Conidial production in earthworm media (FE and 
EDG) was lower than that observed in conventional PDA 
and BHI media (Figure 3c). Conidial production was 
affected by both factors (concentration/medium) and 
interaction (Figure 3d), with an opposite pattern observed 
for A. musiformis. Second, the FE medium showed an 
optimum at C3, whereas conidia production in the 
EDG medium decreased when the medium was diluted 
(Figure 3d). Finally, the germination percentage was more 
than twice as high in the conventional PDA medium as 
in BHI or any other earthworm medium (Figure 3e). 
The percentage of germination in both media (FE and 
EDG) decreased when the concentration was lower, 
with maximum germination for C1 = 45.9 ± 1.17 for FE 
medium (Figure 3f).

Finally, overall, the mycelial morphology was 
different depending on the treatment and invisible for 
concentrations C5 and C6 (data not shown) (Figure 4).
3.2. The effect of earthworm extract on the growth, 
production, and germination of Beauveria bassiana 
conidia
The B. bassiana fungus did not grow in either earthworm 
medium. However, B. bassiana conidia germinated 
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Figure 1. Evaluation of vegetative growth, conidial production and germination in the fungus Arthrobotris musiformis exposed to two 
earthworms’ extracts: fresh earthworm (FE), earthworms devoid of intestinal contents (EDG) and two conventional media: potato 
dextrose agar (PDA), and brain heart infusion agar (BHI). A. Cumulative growth from 3 to 18 days according to conventional and 
earthworm-based media. B. Cumulative growth as a function of concentration and earthworm-based medium. C. Conidia production 
(×10⁵ conidia/mL) according to conventional and earthworm-based media. D. Conidia production (×10⁵ conidia/mL) according 
to concentration and earthworm-based medium. E. Percent germination on conventional and earthworm-based media. F. Percent 
germination as a function of concentration and earthworm-based medium. Concentrations are equivalent to C1 = 40 g/L, C2 = 20 g/L, 
C3 = 10 g/L, and C4 = 5 g/L. Results of one-way ANOVA (A, C, E) or two-way ANOVA (B, D, F), and differences are significant at 
Tukey’s test (HSD) and groups “a”, “b” and “c”.
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on both earthworm-based media at a rate similar to 
that of the conventional BHI medium (approximately 
20%–30%), whereas the PDA supported >60% conidial 
germination (Figure 5a). Otherwise, the medium did not 
affect germination, while the concentration affected their 
germination, with the lower concentrations of C5 and C6 
reducing about half of the germination capacity (Figure 5b), 
with maximum germination for C4 = 45.2 ± 3.55 for EDG 
medium (supplementary data, Table S3).

4. Discussion
In agreement with our hypothesis, the results showed that 
different media based on earthworm products could allow 
the growth and generation of reproductive structures for 
certain fungi in a species-specific manner. This can be 
translated into the possible impact of decaying earthworms in 
nature, which could stimulate the growth and reproduction 
of specific biological control agents naturally present in the 
soil. However, their support is species-specific and depends 
on specialization. Thus, the NF P. lilacinum, which could 
have saprophytic activity as a parasite of eggs and organic 
matter, showed higher growth in earthworm environments 
than in conventional environments. At the same time, the 
NF A. musiformis, could grow in earthworm environments 
but more slowly than in conventional environments. Finally, 
the entomopathogenic fungus B. bassiana could not grow in 
any of the earthworm-based media. 

The fact that dilution of the earthworm-based media 
contributed to the overall improvement in fungal growth 
prompts the consideration that the high concentration 
of FE and EDG media may have an overabundance of 
nutrients and certain proteins; thus, the presence of certain 
compounds derived from earthworm cutaneous excreta 

and coelomic fluid or a combination of all these factors may 
alter their activity (Zhou et al., 2021; Chelkha et al., 2021). 
Indeed, inhibitory growth activity was observed when the 
phytopathogenic fungi Berkeleyomyces basicola, Fusarium 
culmorum, Fusarium oxysporum, Globisporangium 
irregulare, Rhizoctonia solani, Macrophomina phaseolina, 
and Sclerotinia sclerotiorum were exposed to the coelomic 
fluid extract of some earthworm species (Ečimović et al., 
2021; Plavšin et al., 2017). In addition, the paste or powder 
of Perionyx excavatus and Eudrilus eugeniae were found to 
be antifungal against Aspergillus flavus, Aspergillus niger, 
and Candida albicans (Punu et al., 2016; Sethulakshmi et 
al., 2018).

Overall, when the two earthworm-based media 
were compared, the EDG allowed for greater growth of 
NF mycelia than the FE extract, suggesting that certain 
components of the earthworm gut present in the FE 
medium may help inhibit or limit the growth of mycelia 
of both fungi (Shobha and Kale, 2008; Bhorgin and Uma, 
2014; Chauhan, 2014). The earthworm gut is well known 
to mineralize organic matter into finer particles through 
microbial decomposition (Brown et al., 2000). This activity 
results in a decisive release of nutrients, which has been 
shown to promote plant growth (Scheu, 1987; Whalen and 
Parmelee, 2000; Brown et al., 2004; Amador et al., 2006). 
However, as our results suggest, this mineralization may 
not promote NF growth. Also, it is also plausible that the 
high FE concentration included an overabundance of 
nutrients because the negative effect observed in the high 
concentration treatments was reduced in the treatments 
with the dilution of the FE. 

In addition to the impact on mycelial growth, 
the earthworm-based media also influenced conidial 

Figure 2. Growth of Arthrobotrys musiformis after 20 days postexposer to two different earthworm based media: fresh earthworms (FE) 
(four concentration C1, C2, C3, and C4), and earthworms devoid of gut contents (EDG) (four concentration C1, C2, C3, and C4), C1 = 
40 g/L, C2 = 20 g/L, C3 = 10 g/L, C4 = 5 g/L , and two rich media: potato dextrose agar (PDA), and brain heart infusion (BHI). 
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Figure 3. Evaluation of vegetative growth, conidial production and germination in the fungus Purpureocillium lilacinum exposed to 
two earthworm extracts: fresh earthworm (FE), earthworms devoid of intestinal contents (EDG) and two conventional media: potato 
dextrose agar (PDA), and brain heart infusion agar (BHI). A. Cumulative growth from 3 to 18 days according to conventional and 
earthworm-based media. B. Cumulative growth as a function of concentration and earthworm-based medium. C. Conidia production 
(×10⁵ conidia/mL) according to conventional and earthworm-based media. D. Conidia production (×10⁵ conidia/mL) according 
to concentration and earthworm-based medium. E. Percent germination on conventional and earthworm-based media. F. Percent 
germination as a function of concentration and earthworm-based medium. Concentrations are equivalent to C1 = 40 g/L, C2 = 20 g/L, 
C3 = 10 g/L, and C4 = 5 g/L. Results of one-way ANOVA (A, C, E) or two-way ANOVA (B, D, F), and differences are significant at 
Tukey’s test (HSD) and groups “a”, “b” and “c”.
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production and germination. Indeed, conidial germination 
was the only plausible activity of B. bassiana when grown 
in one of the two earthworm-based media. In this case, 
the germination did not depend on the presence or 
absence of gut contents (FE or EDG, respectively) but 
their concentration, suggesting that the inhibitory effect 

originates from the earthworm itself and not from the 
gut-associated microbiota. For NF, the lowest conidial 
production was recorded for FE media for both NF species, 
but this effect was not as strong when its germination was 
studied.

Overall, the dilutions (C2-C4) improved the potential 

Figure 4. Growth of Purpureocillium lilacinum after 20 days postexposer to two different earthworm based media: fresh earthworms 
(FE) (four concentration C1, C2, C3, and C4), and earthworms devoid of gut contents (EDG) (four concentration C1, C2, C3, and C4), 
C1 = 40 g/L, C2 = 20 g/L, C3 = 10 g/L, C4 = 5 g/L , and two rich media: potato dextrose agar (PDA), and brain heart infusion (BHI). 

Figure 5. Evaluation of conidial germination of the fungus Beauveria bassiana exposed to two different earthworm extracts: fresh 
earthworms (FE) and earthworms without gut contents, EDG, and two conventional media: potato dextrose agar (PDA), and brain heart 
infusion agar (BHI). A. Percentage germination on conventional and earthworm-based media. B. Percent germination as a function of 
concentration and earthworm-based medium. Concentrations are equivalent to C1 = 40 g/L, C2 = 20 g/L, C3 = 10 g/L, and C4 = 5 g/L. 
Results of one-way ANOVA (A) or two-way ANOVA (B), and differences are significant according to Tukey’s test (HSD) and groups 
“a”, “b” and “c”.
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reproductive values of both NF (conidial production and 
germination percentage), with some exceptions. This 
result agrees with the impact of earthworm-based media 
and the dilutions studied on mycelial growth, which can 
also be attributed to nutrient overabundance, the presence 
of certain antibiotics and antifungal derivatives, or a 
combination of all these factors (Zhou et al., 2021; Chelkha 
et al., 2021). In conclusion, the presence of earthworm 
cadavers in the soil can modulate the activity of some soil 
inhabitants and provides nutrients for the vegetative and 

reproductive actions of NF and EPFs in a species-specific 
manner.
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